翻訳と辞書
Words near each other
・ Grotesque dance
・ Grotesque Impalement
・ Grotesque Wedlock
・ Grotesquerie
・ Groth
・ Grothe
・ Grothendieck category
・ Grothendieck connection
・ Grothendieck construction
・ Grothendieck duality
・ Grothendieck existence theorem
・ Grothendieck group
・ Grothendieck inequality
・ Grothendieck local duality
・ Grothendieck space
Grothendieck spectral sequence
・ Grothendieck topology
・ Grothendieck trace formula
・ Grothendieck universe
・ Grothendieck's connectedness theorem
・ Grothendieck's Galois theory
・ Grothendieck's relative point of view
・ Grothendieck's Tôhoku paper
・ Grothendieck–Katz p-curvature conjecture
・ Grothendieck–Ogg–Shafarevich formula
・ Grothendieck–Riemann–Roch theorem
・ Grothendieck–Teichmüller group
・ Grothusenkoog
・ Grotius Lectures
・ Grotius Society


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Grothendieck spectral sequence : ウィキペディア英語版
Grothendieck spectral sequence
In mathematics, in the field of homological algebra, the Grothendieck spectral sequence, introduced in ''Tôhoku paper'', is a spectral sequence that computes the derived functors of the composition of two functors G\circ F, from knowledge of the derived functors of ''F'' and ''G''.
If F :\mathcal\to\mathcal and G :\mathcal\to\mathcal
are two additive and left exact functors between abelian categories such that F takes ''F''-acyclic objects (e.g., injective objects) to G-acyclic objects and if \mathcal has enough injectives, then there is a spectral sequence for each object A of \mathcal that admits an ''F''-acyclic resolution:
:E_2^ = (^p G \circ^q F)(A) \Longrightarrow ^ (G\circ F)(A).
Many spectral sequences in algebraic geometry are instances of the Grothendieck spectral sequence, for example the Leray spectral sequence.
The exact sequence of low degrees reads
:0 → ''R''1''G''(''FA'') → ''R''1(''GF'')(''A'') → ''G''(''R''1''F''(''A'')) → ''R''2''G''(''FA'') → ''R''2(''GF'')(''A'').
== Examples ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Grothendieck spectral sequence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.